

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

1 Digital Logic BSc.CSIT

Unit-5

Combinational logic with MSI and LSI

For more notes visit:

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com/
https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

2 Digital Logic BSc.CSIT

Unit-5

Combinational Logic with MSI and LSI

 Binary Adder

This circuit sums up two binary numbers 𝐴 𝑎𝑛𝑑 𝐵 of n-bits using full-adders to add each bit

pair and carry from previous bit position.

Binary Parallel Adder:

A binary parallel adder is a digital circuit that produces the arithmetic sum of two binary

numbers in parallel. It consists of full adders connected in cascade, with the output carry from

one full adder connected to the input carry of the next full adder. An 𝑛 bit parallel adder

requires 𝑛 full adders.

4-bit binary parallel adder:

Fig: 4-bit binary parallel adder

A 4-bit binary parallel adder consists of 4-full adder. The augend bits are 𝐴4, 𝐴3, 𝐴2, 𝐴1 and

addend bits are 𝐵1, 𝐵2, 𝐵3, 𝐵4. This parallel adder produces their sum as 𝐶4𝑆3𝑆2𝑆1𝑆0 where

𝐶4 is the final carry. The carries are connected in chain through the full-adders. The input

carry to the first full adder is 𝐶1 and the output carry from MSB position of full adder is 𝐶4.

Q. Design a BCD-to-excess-3 code converter using a 4-bit full adders MSI circuit.

Soln:

𝐸𝑥𝑐𝑒𝑠𝑠 − 3 𝑐𝑜𝑑𝑒 = 𝐵𝐶𝐷 𝑐𝑜𝑑𝑒 + (0011)2

Augend bits = 𝑋4𝑋3𝑋2𝑋1 (Input bits)

Addend bits = 𝑌4𝑌3𝑌2𝑌1 = 0011

Excess-3 code = 𝑆4𝑆3𝑆2𝑆1 (output)

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

3 Digital Logic BSc.CSIT

Decimal adder/BCD adder:

BCD adder is a combinational digital circuit that adds two BCD digits in parallel and

produces sum which is also BCD.

- In BCD adder, each input digit does not exceed 9, so the output sum can’t be greater than

9 + 9 + 1 = 19, the 1 in the sum being an input carry.

- Suppose we apply two BCD digits to a 4-bit binary adder. The adder will form the sum in

binary and produce a result which may range from 0 to 19.

Truth table for BCD adder is:

- In examining the content of the table, it is apparent that when the binary sum is equal to

or less than 1001, the corresponding BCD number is identical, and therefore no

conversion is needed.

- When the binary sum is greater than 1001, we obtain a non- valid BCD representation.

The addition of binary 0110 (6 in decimal) to the binary sum converts it to the correct

BCD representation and also produces an output carry.

- It is obvious from the table that a correction is needed when the binary sum has an output

carry 𝑘 = 1.

- The other six combination from 1010 to 1111 that need a correction have a 1 in position

𝑍8. To distinguish them from binary 1000 and 1001, which also have a 1 in position 𝑍8,

we specify further that either 𝑍4 or 𝑍2 must have 1.

- The condition for a correction and an output carry can be expressed by the Boolean

function: 𝑪 = 𝑲 + 𝒁𝟖𝒁𝟒 + 𝒁𝟖𝒁𝟐

- When output carry C = 0, nothing is added to the binary sum.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

4 Digital Logic BSc.CSIT

- When output carry C = 1, binary 0110 is added to the binary sum through the bottom 4-

bit binary adder to convert the binary sum into BCD sum. (In fig. below)

Fig: BCD adder

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

5 Digital Logic BSc.CSIT

Magnitude Comparator

A magnitude comparator is a combinational circuit that compares two numbers 𝐴 & 𝐵 and

determines their relative magnitudes. The outcome of the comparison is specified by three

binary variables that indicate whether 𝐴 > 𝐵, 𝐴 = 𝐵, 𝑜𝑟 𝐴 < 𝐵.

4-bit magnitude comparator:

4-bit magnitude comparator is a combinational logic circuit that compares two binary

numbers each of 4-bits.

Consider two numbers 𝐴 & 𝐵 with four digits each.

𝐴 = 𝐴3𝐴2𝐴1𝐴0

𝐵 = 𝐵3𝐵2𝐵1𝐵0

Verification of (𝑨 = 𝑩):

- The equality relation of each pair of bits can be expressed:

𝑥𝑖 = 𝐴𝑖𝐵𝑖 + �̅�𝑖�̅�𝑖 , 𝑖 = 0, 1, 2, 3

Where 𝑥𝑖 = 1 only if 𝐴𝑖 = 𝐵𝑖 and 𝑥𝑖 = 0 only if 𝐴𝑖 ≠ 𝐵𝑖.

- For equality condition to exist, all 𝑥𝑖 variables must be equal to 1. 𝐴 & 𝐵 will be equal if

𝑥3𝑥2𝑥1𝑥0 = 1.

∴ (𝑨 = 𝑩) = 𝒙𝟑𝒙𝟐𝒙𝟏𝒙𝟎

Verification of (𝑨 > 𝑩):

- If 𝐴3 > 𝐵3 then 𝐴 > 𝐵, it means 𝐴3 = 1 & 𝐵3 = 0. Therefore 𝐴 is greater than 𝐵 if

𝑨𝟑�̅�𝟑 = 𝟏.

- If 𝐴3 = 𝐵3(𝑖. 𝑒 𝑥3 = 1) and 𝐴2 > 𝐵2 then 𝐴 > 𝐵. Therefore 𝐴 is greater than 𝐵 if

𝒙𝟑𝑨𝟐�̅�𝟐 = 𝟏.

- If 𝐴3 = 𝐵3(𝑖. 𝑒 𝑥3 = 1) & 𝐴2 = 𝐵2(𝑖. 𝑒 𝑥2 = 1) and 𝐴1 > 𝐵1 then 𝐴 > 𝐵. Therefore 𝐴 is

greater than 𝐵 if 𝒙𝟑𝒙𝟐𝑨𝟏�̅�𝟏 = 𝟏.

- If 𝐴3 = 𝐵3(𝑖. 𝑒 𝑥3 = 1) & 𝐴2 = 𝐵2(𝑖. 𝑒 𝑥2 = 1) & 𝐴1 = 𝐵1(𝑖. 𝑒 𝑥1 = 1) and 𝐴0 > 𝐵0

then 𝐴 > 𝐵. Therefore 𝐴 is greater than 𝐵 if 𝒙𝟑𝒙𝟐𝒙𝟏𝑨𝟎�̅�𝟎 = 𝟏.

∴ (𝑨 > 𝑩) = 𝑨𝟑�̅�𝟑 + 𝒙𝟑𝑨𝟐�̅�𝟐 + 𝒙𝟑𝒙𝟐𝑨𝟏�̅�𝟏 + 𝒙𝟑𝒙𝟐𝒙𝟏𝑨𝟎�̅�𝟎

In the same manner we can derive the expression for (𝑨 < 𝑩).

∴ (𝑨 > 𝑩) = �̅�𝟑𝑩𝟑 + 𝒙𝟑�̅�𝟐𝑩𝟐 + 𝒙𝟑𝒙𝟐�̅�𝟏𝑩𝟏 + 𝒙𝟑𝒙𝟐𝒙𝟏�̅�𝟎𝑩𝟎

Note: Out of these three outputs only one

output will be 1 and other two outputs will

be 0 at a time.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

6 Digital Logic BSc.CSIT

Logic Diagram:

Decoders

A decoder is a combinational circuit that converts binary information from 𝑛 input lines to a

maximum of 2𝑛 unique output lines.

- If 𝑛-bit decoded information has unused or don’t care combinations, the decoder output

will have less than 2𝑛 outputs.

- The decoders presented here are called 𝑛 − 𝑡𝑜 − 𝑚 line decoders where 𝑚 ≤ 2𝑛. Their

purpose is to generate the 2𝑛 (or less) minterms of 𝑛 input variables.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

7 Digital Logic BSc.CSIT

3-to-8 line decoder:

The three inputs are decoded into eight outputs, each output representing one of the minterms

of the 3-input variables.

A particular application of this decoder would be a binary-to-octal conversion. The input

variable may represent a binary number and the outputs will then represent the eight digits in

the octal number system

Three inputs: 𝑋, 𝑌 & 𝑍

Eight outputs: 𝐷0 − 𝐷7

Fig: 3-to-8 line decoder

Truth table:

From the truth table it is observed that the output variables are mutually exclusive because

only one output can be equal to 1 at any one time. The output line whose value is equal to 1

represents the minterm equivalent of the binary number presently available in the input lines.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

8 Digital Logic BSc.CSIT

Q. Implement a full-adder circuit with a decoder and two OR gates.

Soln:

The truth table for full adder:

From the truth table

𝑆(𝐴, 𝐵, 𝐶𝑖𝑛) = ∑(1, 2, 4, 7)

𝐶(𝐴, 𝐵, 𝐶𝑖𝑛) = ∑(3, 5, 6, 7)

Since there are three inputs and a total of eight minterms. So we need 3-to-8 line decoder.

The decoder generates the eight minterms for 𝐴, 𝐵 & 𝐶𝑖𝑛. The OR gate for output sum (𝑆)

forms the sum of minterms 1, 2, 4 & 7. The OR gate for the output carry (𝐶) forms the sum

of minterms 3, 5, 6 & 7.

Fig: Full adder implementation with decoder

Encoder

An encoder is a combinational circuit that performs the inverse operation from that of

decoder. It has 2𝑛 input lines and 𝑛 output lines.

The output lines generate the binary code corresponding to the input value.

Fig: Block diagram of encoder

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

9 Digital Logic BSc.CSIT

E.g. Octal to binary encoder which has 8 inputs and 3 outputs.

Truth table for octal to binary encoder:

Boolean function of output variables:

𝑋 = 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7

𝑋 = 𝐷2 + 𝐷3 + 𝐷6 + 𝐷7

𝑋 = 𝐷1 + 𝐷3 + 𝐷5 + 𝐷7

Logic circuit:

Limitation: Only one input can be enabled at a time. If two inputs are enabled at the same

time, then output is undefined.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

10 Digital Logic BSc.CSIT

Q. Design a 3 to 8 line decoder using two 2 to 4 line decoder and explain it.

Soln:

Fig: 3 to 8 decoder using two 2 to 4 decoder

The figure shows two 2 × 4 decoder with enable input (E) connected to form a 3 × 8

decoder. When 𝐸 = 0, the top decoder is enabled and the other is disabled. The bottom

decoder outputs are all 0’s and the top four outputs generate minterms 000 to 001. When 𝐸 =

1, the enable conditions are reversed. The bottom decoder outputs generate minterms 100 to

111 while the outputs of the top decoder are all 0’s.

Q. Design a 2-to-4 line decoder using NAND gates.

Soln:

Truth table:

Inputs Outputs

A B 𝐷0 𝐷1 𝐷2 𝐷3

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

Note: Similar method for 3-to-8 line decoder in which 3-lines of input are present and 8

output lines.

2 × 4

Decoder

2 × 4

Decoder

X

Y

E

𝐷0 − 𝐷3

𝐷4 − 𝐷7

For the NAND decoder only one output can be

LOW and equal to logic ‘0’ at any given time

with all other outputs being HIGH at logic ‘1’.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

11 Digital Logic BSc.CSIT

Q. Using a decoder and external gates, design the combinational circuit defined by the

following three Boolean functions:

𝑭𝟏 = 𝒙′𝒚′𝒛 + 𝒙𝒛′

𝑭𝟐 = 𝒙′𝒚𝒛′ + 𝒙𝒚′

𝑭𝟑 = 𝒙𝒚𝒛′ + 𝒙𝒚

Soln:

Truth table:

Multiplexer (MUX)

- A multiplexer is a combinational circuit that selects binary information from one of many

input lines and directs it to a single output line.

- Multiplexing is the process of transmitting a large number of information over a single

line.

- The selection of a particular input lines is controlled by a set of selection lines. Normally

there are 2𝑛 input lines and 𝑛 selection lines whose bit combinations determine which

input is selected.

- A multiplexer is also called a data selector, since it selects one of many inputs and steers

the binary information to the output line.

Logic Diagram

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

12 Digital Logic BSc.CSIT

4-to-1 line Multiplexer:

Q. Design a 8-to-1 line multiplexer using lower order multiplexers and explain it.

Soln:

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of

upper 4x1 Multiplexer are I0 to I3 and the data inputs of lower 4x1 Multiplexer are I4 to I7.

Therefore, each 4x1 Multiplexer produces an output based on the values of selection lines,

s1 & s0.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is

present in second stage. The other selection line, s2 is applied to 2x1 Multiplexer.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

13 Digital Logic BSc.CSIT

 If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I0 to I3 based

on the values of selection lines s1 & s0.

 If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I4 to I7 based

on the values of selection lines s1 & s0.

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer performs

as one 8x1 Multiplexer.

Q. Implement the Boolean function 𝑭(𝑨, 𝑩, 𝑪) = ∑(𝟏, 𝟑, 𝟓, 𝟔) with multiplexer.

Soln:

The multiplexer can be implemented with 4 to 1 multiplexer.

Note: It is possible to generate n+1 variables with 2𝑛 to 1 mutiplexer.

Now, truth table for the given function is:

Now the implementation table is

Multiplexer implementation:

 If the minterms in a column are not circled, then

apply 0 to the corresponding multiplexer unit.

 If the 2 minterms are circled, then apply 1 to the

corresponding multiplexer unit.

 If the bottom minterm is circled, and top is not circled

then apply 𝐴 to the corresponding multiplexer unit.

 If the top minterm is circled, and bottom is not circled

then apply 𝐴′ to the corresponding multiplexer unit.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

14 Digital Logic BSc.CSIT

Q. Implement the Boolean function 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = ∑(𝟎, 𝟏, 𝟑, 𝟒, 𝟖, 𝟗, 𝟏𝟓) by multiplexer.

Soln:

This function can be implemented with 8 to 1 MUX.

The truth table for the function is

Minterm A B C D F

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 0 1 1 1 0

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 0

11 1 0 1 1 0

12 1 1 0 0 0

13 1 1 0 1 0

14 1 1 1 0 0

15 1 1 1 1 1

Now the implementation table and multiplexer implementation are given below:

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

15 Digital Logic BSc.CSIT

Demultiplexer (DEMUX)

- A decoder with an enable input can function as a de-multiplexer.

- A de-multiplexer is a circuit that receives information on a single line and transmit this

information on one of 2𝑛 possible output lines. The selection for particular output line is

controlled by the bit values of 𝑛 selection lines.

Fig: A 2-to-4 line decoder with enable (E) input

The decoder of fig can function as a de-multiplexer if the 𝐸 line is taken as a data input line

and lines A and B are taken as the selection lines.

1 to 4 DEMUX:

The 1:4 Demux consists of 1 data input bit, 2 control bits and 4 output bits. I is the input bit,

Y0, Y1, Y2, Y3 are the four output bits and S0 and S1 are the control bits.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

16 Digital Logic BSc.CSIT

1 to 8 De-Multiplexer using 1x4 De-Multiplexers and 1x2 De-Multiplexer:

The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The outputs of

upper 1x4 De-Multiplexer are Y7 to Y4 and the outputs of lower 1x4 De-Multiplexer are Y3 to

Y0.

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of the four

outputs of lower 1x4 De-Multiplexer will be equal to input, I based on the values of selection

lines s1 & s0. Similarly, if s2 is one, then one of the four outputs of upper 1x4 De-Multiplexer

will be equal to input, I based on the values of selection lines s1 & s0.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

17 Digital Logic BSc.CSIT

MUX-DEMUX Application Example

- This enables sharing a single communication line among a number of devices.

- At any time, only one source and one destination can use the communication line.

Read Only Memory (ROM)

- A read-only memory (ROM) is a device that includes both the decoder and the OR

gates within a single IC package. The connections between the outputs of the decoder

and the inputs of the OR gates can be specified for each particular configuration by

“programming” the ROM.

- A ROM is essentially a memory (or storage) device in which a fixed set of binary

information is stored.

- The binary information must first be specified by the user and is then embedded in the

unit to form the required interconnection pattern. ROM’s come with special internal links

that can be fused or broken. The desired interconnection for a particular application

requires that certain links be fused to form the required circuit paths. Once a pattern is

established for a ROM, it remain fixed even when power is turned off and then on again.

- A ROM consists of 𝑛 input lines and 𝑚 output lines.

- Each bit combination of input variables is called an address.

- Each bit combination that comes out of the output lines is called a word. The number of

bits per word is equal to the number of output lines m.

- A ROM with n input lines has 2𝑛distinct addresses, so there are 2𝑛 distinct words which

are said to be stored in the unit.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

18 Digital Logic BSc.CSIT

 Internally, the ROM is a combinational circuit with AND gates connected as a decoder

and a number of OR gates equal to the number of outputs in the unit.

Combinational Logic implementation of ROM:

When a combinational circuit is implemented by means of ROM the function must be

expressed in sum of min terms or better yet by a truth table.

Q. Implement the following combinational logic function with a 4X2 ROM.

Soln:

Truth table specifies a combinational circuit with 2 inputs and 2 outputs. The Boolean

function can be represented in SOP as;

Combinational-circuit implementation with a 4 x 2 ROM:

 ROM with AND-OR gates ROM with AND-OR-INVERT gates

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

19 Digital Logic BSc.CSIT

Q. Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and

generates an output binary number equal to the square of the input number.

Soln:

First step is to derive the truth table for the combinational circuit

Output B0 is always equal to input A0; so there is no need to generate B0 with a ROM since it

is equal to an input variable. Moreover, output B1 is always 0, so this outputs is always

known.

Implementation by ROM:

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

20 Digital Logic BSc.CSIT

Types of ROM:

1. Mask ROM

- Permanent programming done at fabrication time

- Fabrication take place at factory as per customer order

- Very expensive and therefore feasible only for large quantity orders

- Once the memory is programmed during the manufacturing process, the user cannot

alter the programs.

2. PROM (Programmable ROM)

- A blank chip which can be programmed only once using a special device called

programmer.

- Once it’s programmed its content cannot be modified or erased.

3. EPROM (Erasable Programmable ROM)

- Can be programmed multiple times.

- Its content can be erased by using UV (ultra violet) light.

- Exposure to the UV light will erase all contents.

4. EEPROM (Electrically Erasable Programmable ROM)

- Similar to EPROM but its contents can be electrically erased and re-written without

having to remove it from the computer.

Programmable Logic Array (PLA)

A combinational circuit may occasionally have don’t care conditions. When implemented

with a ROM, a don’t care condition becomes an address input that will never occur. The

words at the don’t care addresses need not be programmed and may be left in their original

state (all 0’s or all 1’s). The result is that not all the bit patterns available in the ROM are

used, which may be considered as waste of available equipment.

For example, a combinational circuit that converts a 12-bit card code to a 6-bit internal

alphanumeric code.

* It consists 12 inputs and 6 outputs. The size of the ROM must be 4096 × 6 (212 × 6).

* There are only 47 valid entries for the card code, all other input combinations are don’t

care. The remaining 4049 words of ROM are not used and are thus wasted.

So, Programmable Logic Array is a LSI component that can be used in economically as an

alternative to ROM where number of don’t-care conditions is excessive.

 PLA does not provide full decoding of the variables and does not generate all the

minterms as in the ROM.

Block diagram of PLA:

A block diagram is shown in fig. It consists 𝑛 inputs, 𝑚-outputs, 𝑘 product terms and 𝑚 sum

terms. The product terms constitute a group of 𝑘 AND gates and the sum terms constitute a

group of 𝑚 OR gates.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

21 Digital Logic BSc.CSIT

 The number of programmed links is 𝟐𝒏 × 𝒌 + 𝒌 × 𝒎 + 𝒎, whereas that of a ROM is

𝟐𝒏 × 𝒎 .

Implementation of combinational circuit by PLA:

PLA program table:

PLA Logic Circuit:

Fig: PLA with 3 inputs, 3 product terms, and 2 outputs

Input side:

 1=uncomplemented in term

 0=complemented in term

 - = does not participate

Output side:

 1= term connected to output

 - = no connection to output

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

22 Digital Logic BSc.CSIT

PLA program table consists of three columns:

- First column: lists the product terms numerically.

- Second column: specifies the required paths between inputs and AND gates.

- Third column: specifies the paths between the AND gates and the OR gates.

Under each output variable, we write a T (for true) if the output inverter is to be bypassed,

and C (for complement) if the function is to be complemented with the output inverter.

Note: PLA implements the functions in their sum of products form (standard form, not

necessarily canonical as with ROM). Each product term in the expression requires an AND

gate. It is necessary to simplify the function to a minimum number of product terms in order

to minimize the number of AND gates used.

Q. A combinational circuit is defined by the functions:

 𝑭𝟏(𝑨, 𝑩, 𝑪) = ∑(𝟑, 𝟓, 𝟔, 𝟕)

 𝑭𝟐(𝑨, 𝑩, 𝑪) = ∑(𝟎, 𝟐, 𝟒, 𝟕)

Implement the circuit with a PLA having three inputs, four product terms, and two outputs.

Soln:

First of all we have to write the function in minimize SOP form:

There are six product terms in 𝐹1 and 𝐹2, but only four product terms are allowed to use.

Now implement 𝐹1
′(𝐴, 𝐵, 𝐶)

𝐹1
′(𝐴, 𝐵, 𝐶) = ∑(0, 1, 2, 4)

𝐹2(𝐴, 𝐵, 𝐶) = ∑(0, 2, 4, 7)

From these equation it is clear that the minterms 0, 2 and 4 are common.

Now obtain the minimized expression by using them

Now four product terms are 𝐵′𝐶′, 𝐴′𝐶′, 𝐴′𝐵′ 𝑎𝑛𝑑 𝐴𝐵𝐶.

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

23 Digital Logic BSc.CSIT

𝐹1 = 𝐵′𝐶′ + 𝐴′𝐶′ + 𝐴′𝐵′

𝐹2 = 𝐵′𝐶′ + 𝐴𝐵𝐶 + 𝐴′𝐶′

Now, PLA program table:

Note that output 𝐹1 is the normal (or true) output even though a C is marked under it. This is

because 𝐹1
′ is generated prior to the output inverter. The inverter complements the function to

produce 𝐹1 in the output.

Draw PLA circuit yourself.

https://collegenote.pythonanywhere.com/

